Testing for White Noise under Unknown Dependence and Its Applications to Diagnostic Checking for Time Series Models

نویسنده

  • XIAOFENG SHAO
چکیده

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box–Pierce test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for dependent white noise. Because of recent popularity of conditional heteroskedastic models (e.g., generalized autoregressive conditional heteroskedastic [GARCH] models), which imply nonlinear dependence with zero autocorrelation, there is a need to understand the asymptotic properties of the existing test statistics under unknown dependence. In this paper, we show that the asymptotic null distribution of the Box–Pierce test statistic with general weights still holds under unknown weak dependence as long as the lag truncation number grows at an appropriate rate with increasing sample size. Further applications to diagnostic checking of the autoregressive moving average (ARMA) and fractional autoregressive integrated moving average (FARIMA) models with dependent white noise errors are also addressed. Our results go beyond earlier ones by allowing non-Gaussian and conditional heteroskedastic errors in the ARMA and FARIMA models and provide theoretical support for some empirical findings reported in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing for White Noise under Unknown Dependence and Its Applications to Goodness-of-fit for Time Series Models

Testing for white noise has been well studied in the literature of econometrics and statistics. For most of the proposed test statistics, such as the well-known Box-Pierce’s test statistic with fixed lag truncation number, the asymptotic null distributions are obtained under independent and identically distributed assumptions and may not be valid for the dependent white noise. Due to recent pop...

متن کامل

White noise testing and model diagnostic checking for functional time series

This paper is concerned with white noise testing and model diagnostic checking for stationary functional time series. To test for the functional white noise null hypothesis, we propose a Cramér-von Mises type test based on the functional periodogram introduced by Panaretos and Tavakolithe (2013a). Using the Hilbert space approach, we derive the asymptotic distribution of the test statistic unde...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

Three Approaches to Time Series Forecasting of Petroleum Demand in OECD Countries

Petroleum (crude oil) is one of the most important resources of energy and its demand and consumption is growing while it is a non-renewable energy resource. Hence forecasting of its demand is necessary to plan appropriate strategies for managing future requirements. In this paper, three types of time series methods including univariate Seasonal ARIMA, Winters forecasting and Transfer Function-...

متن کامل

TREND-CYCLE ESTIMATION USING FUZZY TRANSFORM OF HIGHER DEGREE

In this paper, we provide theoretical justification for the application of higher degree fuzzy transform in time series analysis. Under the assumption that a time series can be additively decomposed into a trend-cycle, a seasonal component and a random noise, we demonstrate that the higher degree fuzzy transform technique can be used for the estimation of the trend-cycle, which is one of the ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010